

Petroleum Refining Protocol Discussion Paper

Mike McCormack
California Climate Action Registry

Lisa Campbell URS Corporation

Agenda

Introduction

- Role of California Climate Action Registry
- Discussion paper objectives

GHG sources and methodologies

- Source prioritization
- Method options for major sources

Facility definition

- Co-located operations
- Reporting considerations
- Q&A

Role of the California Registry

Overall:

Support the development of AB32 reporting rules

Specifically:

Inform the discussion of existing Registry reporting methods

Inform the discussion of other national & international best practices

Discussion Paper Objectives

- Serve as a reference for the petroleum refining sector technical workgroup
- Provide information on
 - The refining sector in California
 - Boundary considerations (e.g., defining a facility)
 - GHG source identification (and relative emissions contribution)
 - GHG calculation methodology options
 - QA/QC
- Serve as a starting point for developing a Climate Registry voluntary reporting protocol

GHG Source Prioritization

		Percent Contribution to Total CO ₂ Equivalent		
		Emissions		
Source Type	Source	CO_2	CH ₄	N ₂ O
Combustion	External	42.3	3.9 E-3	7.1 E-2
Sources	combustion			
	Internal	7.4	1.7 E-1	5.6 E-1
	combustion			
5	Flares ^a	2.8	1.2 E-4	0
	Incinerators	0.3	3.0 E-5	5.5 E-4
	Combustion	52.9	1.8 E-1	6.3 E-1
1	Total			
Vented sources	Hydro gen plant	10.7	0	0
	vents			
	Catalytic	35.2	0	0
	cracking			
	regeneration			
	vent			
	Storage tanks	0	Negligible	0
	Loading / transit	0	0	0
	Vented Total	45.9	0	0
Fugitive Sources	Fugitive	Negligible	? ^b	0
	components			
	Fugitive Total	Negligible	Negligible	0
Indirect Sources	Electricity	5.8 E-1	2.6 E-4	2.7 E-2
	purchased			
	Indirect Total	5.8 E-1	2.6 E-4	2.7 E-2

Source: API Compendium, Table 7-24, 2004

GHG Major Sources

Method Options

- Options for estimation methodologies for major sources
 - Stationary combustion
 - Refinery fuel gas
 - Flaring
 - Process emissions
 - FCCU catalyst regeneration
 - H₂ production
 - Fugitive emissions

Method Accuracy Ratings

Petroleum Refining Guidance:

- API Compendium
 - Preferred approach
 - Alternate approach
- IPIECA Guidelines
 - Tier A: +/- 5-10% uncertainty
 - Tier B: +/- 10-15%
 - Tier C: +/- 15-30%
- EU ETS
 - Tier 3: highest accuracy
 - Tier 1: lowest

General Guidance:

- DOE 1605(b)
 - Tier A: highest accuracy
 - Tier D: lowest

Combustion: Fuel-Based Material Balance Approach

$CO_2 = f(Fuel usage, MW, Carbon Content, Oxidation Factor)$

- Data Required
 - Fuel consumption
 - Fuel composition
- Accuracy Rating
 - Highest
 - IPIECA rating depends on sample frequency

- Advantages
 - High accuracy
 - RFG composition generally measured
- Disadvantages
 - Sample frequency commensurate with variabiliy
 - Data collection and management

Fuel-Based Heating Value Approach

$CO_2 = f[Fuel usage, EF (lb <math>CO_2/Btu), HHV]$

- Data Required
 - Fuel consumption
 - Fuel heating value
- Accuracy Rating
 - Compendium:
 - Alternate approach
 - EU ETS:
 - Tier 2

- Advantages
 - More accurate than simple emission factor approach
- Disadvantages
 - Default factors based on assumed carbon content
 - RFG characteristics for refineries in CA different than average US refinery

CARB Proposed Approach for RFG

 EF_{CO2} (Ib CO_2 /Btu) = f(Carbon Content, HHV, MW) (Daily)

 $CO_2 = f(Fuel Usage, EF_{CO2}, HHV) (Hourly)$

- Procedure:
 - Daily composition to derive EF
 - Apply daily EF to hourly
 HHV to estimate CO₂

- Data Required
 - Fuel consumption
 - Daily fuel composition
 - Hourly heating value

CARB Proposed Approach for RFG

- Advantages
 - High accuracy
 - Data to assess fuel composition variability
- Disadvantages
 - High sample frequency
 - Data collection and management resource intensive
 - Verification more data intensive

Considerations:

- Materiality, especially when more than one RFG system is employed
- Variability of composition over time
- Sample size vs. improved accuracy
- Resource requirements for sampling, analysis, data archiving and management, reporting, and verification

RFG Sampling Frequency

Precedents – EU ETS

- Minimum sampling frequency of RFG is at least daily, using appropriate procedures at different parts of the day.
- If available, evidence that the derived samples are representative and free of bias.
- Annual average derived emission factor has a maximum uncertainty of less than one-third of the maximum uncertainty in the associated activity data based on the reporting tier.

Flaring: Fuel-based Material Balance

 $CO_2 = f(Vol. Flared, Carbon Content, Combustion Efficiency)$

 $CH_4 = f(Vol. Flared, CH_4 Fraction, Un-oxidized CH_4)$

- CO₂ Combustion Efficiency:
 - API Compendium: 98%
 - EU ETS: 99.5%
- Methane Destruction Efficiency:
 - Un-oxidized methane:0.5%

- Alternate Approaches:
 - Volume flared estimated
 - Carbon content estimated

Process: CCU Catalyst Regeneration

Coke Burn Rate Method

 $CO_2 = f(Coke Burn, Coke Carbon Fraction)$

Coke Burn = $f(\%CO_2, \%CO, \%O_2, Vol. Exhaust, Vol. Air, etc.)$

- Data Required
 - Coke carbon fraction
 - Exhaust gas measurements
- Accuracy Rating
 - Compendium: Preferred
 - IPIECA: Tier A
 - EU ETS: Tier 1

- Advantages
 - Reasonable accuracy
 - Coke burn available
- Disadvantages
 - Data intensive for coke burn estimate

Process: CCU Catalyst Regeneration

Flue Gas Composition Method

 $CO_2 = f(Air Rate, Supplemental O_2 Rate, %CO_2, %CO)$

- Data Required
 - Air intake rate(s)
 - Exhaust gas measurements
- Accuracy Rating
 - Compendium: Preferred
 - IPIECA: Tier A
 - EU ETS: Not addressed

- Advantages
 - Reasonable accuracy
 - Requires less data than coke burn rate method
- Disadvantages
 - If exhaust rate known, can be simplified.

Process: Hydrogen Production

Feedstock Rate/Composition Method

$CO_2 = f$ (Feedstock Rate, Feedstock Carbon Composition)

- Data Required
 - Feedstock rate
 - Feedstock composition
- Accuracy Rating
 - Compendium: Preferred
 - IPIECA: Tier A
 - EU ETS: Tier 2

- Considerations
 - Feedstock sampling frequency commensurate with compositional variability
 - Where PSA offgas is recycled as fuel, avoid double counting

Process: Hydrogen Production

Hydrogen Prouction Method

 $CO_2 = f(H_2 \text{ Production Rate, Feedstock Carbon Composition})$

- Data Required
 - Hydrogen rate
 - Feedstock composition
- Accuracy Rating
 - Compendium: Alternate
 - IPIECA: Tier B
 - EU ETS: Not addressed

- Considerations
 - Should not be used (without modification) when RFG is feedstock
 - Should not be used where
 PSA offgas is recycled as fuel, unless stream is accounted for

Fugitive Emissions

- CH₄ fugitive emissions historically considered negligible for refining operations
- Recent optical infrared measurement studies have indicated higher than previously believed
 - Around 1-2% (50,000 tCO2e/yr) from average refinery
 - Major areas were vacuum distillation, delayed coker area, cooling towers, crude feed tanks

Installation Definition

PSD

- SIC group. If the plants could have separate SICs but a support relationship exists, e.g., 50% of the product of one is utilized by the other, then one plant is considered a support facility and this criterion shall be considered met,
- Are located on one or more contiguous or adjacent properties (in the same general area), and
- Are under common ownership or control.

EU ETS

— "Installation" means a stationary technical unit where one or more activities listed in Annex I (e.g., mineral oil refining) are carried out and any other directly associated activities which have a technical connection with the activities carried out on that site and which could have an effect on emissions and pollution.

Co-Located Facilities

- Common configurations of co-located facilities
 - Hydrogen production
 - Cogeneration
 - Loading / unloading operations
 - Wastewater treatment
- Potential reporting gaps:
 - Non-combustion sources may not be reported
 - Hydrogen process emissions
 - Loading / unloading operations
 - Wastewater treatment operations

Questions?

Mike McCormack Mike@climateregistry.org 213.891.6920 (office)

Lisa Campbell
Lisa_Campbell@URScorp.com
919.461.1344 (office)
919.360.5642 (mobile)